
22 LINUX IDENTITY KIT 23www.linuxidentity.com

A newcomer to FreeBSD will probably
find himself served well by the KDE
desktop environment that ships

as a default part of PC-BSD, the desktop
oriented version of FreeBSD, or that can
run on FreeBSD just as easily as on Linux.
KDE provides a full-featured desktop-style
interface that gives you the same mouse-
driven control, windowed application
sharing, and icon-based file management
that has become a part of all our lives over
twenty years of Windows and Mac desktop
computing.

But FreeBSD isn’t just about the desk-
top; indeed, more so than Linux, it’s aimed
at the server market, with far less attention
paid to desktop users than to system ad-
ministrators who want a stable and speedy
platform for running their high-performan-
ce network services.

A server in that role has no use for a
graphical desktop environment; it seldom
even has a monitor. All the interaction a
user generally has with a FreeBSD machi-
ne is through a textual command line ac-
cessed through a remote SSH connection.
Instead of clicking icons and menus, users
memorize and type commands, exchan-
ging all communication with the system
through a rectangle of plain text. It’s the
way it’s been done for decades – and for
Unix-heads, it’s still the best way. But for a
newbie to the world of Unix, accustomed to
computers as being launching points for
web browsers and digital movies and 3D
video games, it’s a lot to swallow.

Fortunately, anyone whose experience
with alternative operating systems inclu-
des any time spent dabbling in Linux can

count himself fortunate if confronted by
a FreeBSD machine. This is because, as
you can expect from any Unix, FreeBSD
works in much the same way that Linux
does, particularly to a brand-new user who
wants to know what the basic commands
are for getting around in the command-line
interface.

Getting around
In a graphical operating system, the first
thing the curious user does is double-click
things on the desktop and start navigating
around through the folders that are availa-
ble. That impulse is no different in the com-
mand line interface (CLI) world; it’s just that
the tools and techniques you use to do it
are a bit different, and require you to me-
morize a few short commands and their
obscure suffixes (flags or parameters) ra-
ther than learn a few moves to use with
your mouse. The first command, the one
that does the equivalent of showing you a

Basic commands
Brian Tiemann

Figure 1. Editor you can launch from command line

24 LINUX IDENTITY KIT 25www.linuxidentity.com

Basic commands

window with a list of the files in it, is
the ls command, which stands for
list:

% ls
Birthday.mov essays ↵

shopping_list.txt
My DVD List.txt mozilla
Picture1.jpg mp3

(if you’re already a functional Linux
or Unix user, none of this will be
new to you; just bear with me here.)
The textual output shown here con-
sists of a line for the command you
type, printed in bold, following the
prompt set by your system ("%" in
this case, but many systems use
different prompts customized for
their own users’ purposes). This is
followed by the output that appears
after you press [Enter] or [Return].

What’s happening here is that
a hypothetical user typed the ls
command, requesting a listing of
all the files in the current directory
(a directory is what you might be
used to thinking of as a folder, an
entity that contains files and other
folders in a hierarchy). The system
responds by printing out a table of
file names. There aren’t any pretty
icons to go with them, and you can’t
easily tell which are files and which
are folders, but aside from that the-
re isn’t that much to separate this
conceptually from double-clicking a
folder name to get a window full of
file icons.

Suppose, though, that you wan-
ted to get a little bit more out of your
file listing. File names are just text,
after all, and text is what a CLI has
in spades; you ought to be able to
coax a little more meaning out of
this listing. Well, you’re in luck: this
is a perfect opportunity to demons-
trate how parameters work.

% ls -F
Birthday.mov essays/ ↵

 shopping_list.txt
My DVD List.txt mozilla*
Picture1.jpg@ mp3/

Adding the "-F" flag (after a space,
don’t forget the space!) modifies
the output of ls by adding symbols
that indicate what kind of file they

are. They’re not application-based
icons like the ones you might be
used to, distinguishing one file type
from another; rather, this system
distinguishes objects much more
broadly, by using a slash ("/") to
denote directories, the "@" sign for
symbolic links (which you can think
of as Unix versions of shortcuts or
aliases), and asterisks ("*") for exe-
cutable files (for example programs).
For example, in this sample output
you can tell that mp3 is a folder (pro-
bably containing music files),
Picture1.jpg is really an alias for an
image file somewhere else in the
system, and mozilla is an executa-
ble program, which you can launch
like this:

% ./mozilla

The "./" prefix here tells the
system that the program file mo-
zilla is in the current directory,
denoted by a single dot (the pa-
rent directory is two dots, "..").
Why isn’t this obvious, you ask?
Shouldn’t the system be able to
figure that out? Well, yes - except
that being able to run a command
that refers to a file in your current
directory is generally thought of as
poor style and bordering on bad
security practice (in the Unix world,
everything you do takes place under
an invisible mental banner that says
CONSIDER THE SECURITY IMPLICA-
TIONS – or at least it ought to).

In FreeBSD, as in Linux and
every other CLI-driven Unix, your
command-line environment comes
preloaded with several paths to
directories in the system where exe-
cutable programs might be found.
These paths might include /bin,
/usr/sbin, /usr/local/bin, and a
few others. (The ls command, for
example, lives in /bin.) But suppose
you had a program called top that
was sitting in your personal direc-
tory. If you typed top from within
that directory, that personal pro-
gram might launch instead of the
one installed at the system level.
It’s possible that that file might
have been put there maliciously
by someone who gained access to
your account; and if it’s not really

the top program, but a piece of ma-
lware designed to exploit your user
privileges somehow to gain control
of the system or otherwise mess
things up, you could find yourself
unwittingly triggering a destructive
event by running what you think is
a routine program.

This might seem far-fetched,
as can the idea that forcing you to
specify "./" to indicate a local exe-
cutable file in the current directory
might make much of a difference;
but you’ll soon learn not to be sur-
prised at the ingenuity of mischief-
makers, or the benefits of even a
small inconvenience standing in
their way. If it means memorizing
a little more of this arcane CLI
knowledge for the benefit of in-
creased compliance with accepted
best practices, you’re better off
swallowing that pill than trying to
find a way to avoid it (for example
by customizing your shell’s environ-
ment variables to add "./" to your
path, which you can do, but you
really shouldn’t).

While we’re on the subject of
the current directory, though, you
might notice that in a command-line
environment, there’s not really any
indication of where in the filesystem
you are.

Whereas in a GUI like KDE or
Windows you can see each folder
graphically represented as a win-
dow or an icon in a clear hierarchy,
at the command line all you see is a
list of files.

Some systems are set up to
display your location right in the
prompt, like this:

~ btiemann/mp3 %

But if yours isn’t configured that way,
you can still find out your location
using the pwd command (it stands
for present working directory):

% pwd
/home/btiemann/mp3

This tells me that I’m in the "mp3"
subdirectory of my home direc-
tory. I can move around using the
cd (change directory) command,
like this:

24 LINUX IDENTITY KIT 25www.linuxidentity.com

% cd /home/btiemann

This would move me into my home
directory.

A few other usages of cd would
be to take me to a subdirectory,
specified with a relative path (for
example one that does not begin
with the slash, "/", that denotes
the root, or topmost, directory of the
entire system):

% cd essays

Or to change to the parent direc-
tory:

% cd ..

Or to move two levels up the tree:

% cd ../..

Or to return to my home directory
using the shortcut of omitting the
path parameter altogether:

% cd

Working with Files
Now that you know the basics of
command-line navigation, you can
put it to use by moving some files
around. The first thing to do might
be to create a text file. You can use
the built-in "ee" editor for this:

% ee test.txt

When you’ve typed some text, press
[Escape] to bring up the menu, then
use the Up and Down arrows to
select Leave editor. Choose Save
changes in the next screen, and
you’ll exit the editor having created
a new file. You can get a closer look
at it now using the ls command in
another new way:

% ls -l test.txt
-rw-r--r-- 1 btiemann users ↵

561 Mar 31 2008 test.txt

Here, the "test.txt" argument
makes ls show only the informa-
tion on the specified file, and the
"-l" flag makes it print its output
in "long" form, meaning to show in-
formation on the file’s permissions,

ownership, last-modification date,
and size (in bytes).

You can now move the file to
some other location. This is done
using the mv command (many core
Unix commands, as you can see,
are abbreviated to an almost comi-
cal degree - but for hard-core users
who use these commands hundreds
of times a day, the less typing they
can get away with, the better):

% mv test.txt essays

This moves the file into the "es-
says" subdirectory. Just a with cd,
you can also specify a destination
such as the parent directory:

% mv test.txt ..

Or, if the file you want to move is
somewhere other than your current
directory, you can use a relative
path to refer to it:

% mv ../test.txt essays

Or an absolute path:

% mv /home/btiemann/test.txt ↵
essays

What happens if you move a file into
a directory where there’s already a
file with the same name as the one
you’re moving? Well, if the file’s per-
missions allow it, the old file gets
overwritten, without so much as a
warning. This is one of the pitfalls –
or, depending on how you see it, the
blessings – of an austere CLI envi-
ronment: it really knows how to get
out of your way and let you do your
work... or shoot yourself in the foot.

Indeed, the mv command has
many potentially destructive uses.
One of the most commonly surpri-
sing ones, to newcomers to Unix,
is that the mv command is what you
use to rename files.

Rather than having a dedicated
command for "rename", the develo-
pers of Unix decided that if you’re
changing a file’s name, what you’re
really doing is "moving" the old file
to a new name (which makes sense
if you think of names as being trivial
little identifiers that merely point

to the really interesting stuff, the
data):

% mv test.txt my_essay.txt

There is, however, a totally separate
command for copying files: cp. This
command works just like mv, except
that it duplicates the original file
and leaves it where it is:

% cp test.txt my_essay.txt

Finally, deleting a file is done using
the rm command, which stands for
remove:

% rm test.txt

Suppose you want to make a new
directory to store this file and
others. You’d do that with the
mkdir (make directory) command:

% mkdir essays/history

This command creates a subdirecto-
ry called "history" inside the "es-
says" directory. As with most of the
other commands you’ve seen, the
arguments can be bare filenames
(to refer to a target in the current
directory), absolute paths (begin-
ning with the "/" directory and
specifying each subsequent step
down the tree), or relative paths (as
you just saw).

Deleting a directory is a little
trickier. The command for deleting a
directory is rmdir, or remove direc-
tory; but it only works on a directory
that’s empty:

% rmdir essays
rmdir: essays: Directory ↵

not empty

Now, you can go through the con-
tents of your directory and pains-
takingly delete every single file in it
using the rm command (or, for more
convenience and more risk of things
going badly wrong, rm *, which mat-
ches all filenames in the current di-
rectory); or, if you’re in a hurry or just
want to get things over with, you can
use the rm -rf command to delete
a directory and everything inside it
all at once:

26 LINUX IDENTITY KIT 27www.linuxidentity.com

Basic commands

% rm -rf essays

Note, though, that doing it this way
means you won’t get any warnings
or second chances this way (the
-f flag suppresses them); and
you’d better be sure that everything
inside all the subdirectories of the
directory you’re deleting is really
safe to delete. FreeBSD has no
Trash or Recycle Bin equivalent - an
rm command is forever.

Viewing Files
A graphical operating system in the
modern day is designed to let you
do just about anything with a click
or two of the mouse. You’re proba-
bly well accustomed to viewing the
contents of a text document or a
picture file by double-clicking on it;
this causes the operating system to
look up the installed application
that’s registered to be responsible
for opening files with the specified
type (generally defined by the three-
or four-letter extension at the end of
the file’s name, such as .txt or .jpg
or .html).

Unix, however, does not have
this facility built into its architecture;
whereas KDE behaves much like
Windows or Mac OS X when it co-
mes to file type associations and
opener applications, in the CLI envi-
ronment you have to use other
means to see inside your files.

To show the contents of a plain
text file, use the cat command
(whose name stands for catenate):

% cat my_essay.txt

This is a test.
Now is the time for all good men

to come to.
This is great for short files; but

many of the text files you’ll encoun-
ter are many kilobytes or even me-
gabytes long (think log files). The-
re’s a variety of other commands
that let you manage these larger fi-
les much more efficiently, such as
more:

% more /var/log/maillog

The more program is a pager, which
is a full-screen program that lets

you move through the contents of
a text file page by page, using the
space bar to move forward and the
W key to move back. Skip to the end
by pressing [Shift+] (the > symbol),
or the beginning with <). You can
search for a string of characters by
typing / followed by the string, then
pressing [Return] or [Enter]. Press
[Q] to quit.

Working within the textual
shell, particularly through a remote
terminal connection (for example
over SSH), you’re really only going
to be able to look at plain text files;
images, movies, and even text do-
cuments that are stored in a binary
format (such as Microsoft Word
files) are going to be unviewable
unless you’re working within a gra-
phical environment like KDE.

If you are using KDE, however
(KDE does include a terminal pro-
gram called Konsole that gives
you access to a FreeBSD desktop
machine’s CLI layer), you can open
images, movies, and other media
file types in external programs, pro-
vided you’ve got them installed. For
example, the xv program lets you
view pictures:

% xv Picture1.jpg

Movies can be viewed using the
MPlayer program:

% mplayer Birthday.mov

Word documents can be opened
using OpenOffice.org, a Microsoft
Office-compatible suite available
for free at the website of the same
name. Indeed, just about any po-
pular or generic file format has a
program that can open it under
Linux; and if a program exists for
Linux, chances are that it can be
compiled and installed on FreeBSD
as well, if there isn’t a binary pac-
kage for it already. And if there isn’t,
FreeBSD’s Linux compatibility layer
will allow it to run Linux programs
natively.

Getting
more information
You’ve now got a pretty good idea
of the equivalent commands that

will allow you to move around the
system and work with files just as
you would on a desktop system
with a mouse-driven GUI. Inevita-
bly, though, an article this long can
only scratch the surface of what’s
possible at the Unix command line.
Whole textbook chapters can be
written (as I can personally attest)
on subjects like file permissions
alone. You’re going to need to con-
tinue your research on your own,
preferably with a FreeBSD machine
handy that you can learn on.

There are dozens of websites
and books available on Unix and
FreeBSD, and I would be remiss if I
did not plug my own book, FreeBSD
Unleashed, Third Edition (Sams Pu-
blishing, 2006).

Still, though, for the impatient
there’s no beating the online
FreeBSD Handbook (http://
www. f reebsd.org/handbook/
basics.html) for command-line
theory and tutorials with details
specific to the tcsh-centric, GNU-
phobic world of FreeBSD (as op-
posed to the bash-centric, GNU-
heavy world of Linux).

Also remember that the man
command is available for any com-
mand in the FreeBSD system. Just
type man command to read the do-
cumentation in the more pager that
you saw earlier:

% man ls

Finally, check out the FreeBSD
mailing lists (available at http://
www.freebsd.org/community/
mailinglists.html). Subscribing to
one of these lists will give you a tap
into the vibrant FreeBSD user com-
munity, letting you ask questions
and hear others working their way
through the same problems you’re
facing.

In the open-source world, there’s
no better problem-solving tool than
the community itself, which is ar-
guably the whole movement’s pri-
mary strength. And if you’re a part
of the community, you might as well
use it to your advantage!

